Blogia

tatianalaracamargo

TAXONOMIA

http://www.google.com/search?hl=es&q=TAXONOMIA&btnG=Buscar

TAXONOMIA

vivos en diferentes niveles jerárquicos, comenzandooriginalmente por el de Reino. Hoy, se considera el Dominio como una jerarquía suprarreinal, dada la reciente necesidad de incluir también a Bacterias y a Arqueas. Los reinos se dividen en Filos o Phyla (en singular, Phylum) para los animales, y en Divisiones para plantas y otros organismos. Éstos se dividen en Clases, luego en Órdenes, Familias, Géneros y Especies.

Aunque el sistema de Carlos Linneo era firme, la expansión de conocimiento ha dado lugar a una expansión del número de niveles jerárquicos, incrementando los requerimientos administrativos del sistema, aunque permanece como único sistema de clasificación básica que actualmente cuenta con la aprobación científica universal. Entre las subdivisiones posteriores, han surgido entidades como Superclases, Super, Sub e Infraórdenes, Super y Subfamilias, Tribus y Subtribus. Muchas de estas jerarquías adicionales suelen surgir en el estudio de disciplinas como la Entomología, que requiere clasificar nuevas especies. Cualquier campo biológico que estudie las especies está sujeto a la clasificación taxonómica linneana, y en extensión, a sus rangos jerárquicos, particularmente si se lleva a cabo la integración de organismos vivientes con especies fósiles. Será conveniente entonces aplicar herramientas más novedosas de clasificación, como la cladista.

Tras el rango de especie, se pueden dar también sub-rangos, tales como subespecie y raza en animales, y variedad y forma en botánica, aunque en ésta última disciplina, el término subespecie también es utilizado

Historia de la taxonomía

Los orígenes de la taxonomía

Los orígenes de la taxonomía se remontan a los orígenes del lenguaje, cuando las personas llamaban con los mismos nombres a organismos más o menos similares, sistema que persiste hoy en día en lo que llamamos los "nombres vulgares" de los organismos. Todas las sociedades humanas poseen un sistema taxonómico que nombra a las especies y las agrupa en categorías de orden superior. El ser humano posee un concepto intuitivo de lo que constituye una especie, producto de categorizarlas según sus propiedades emergentes observadas, y esto se ve reflejado en que todas las clasificaciones populares de los organismos poseen remarcables similitudes entre ellas y también con las utilizadas hoy en día por los biólogos profesionales (Hey 2001[44] ).

La taxonomía biológica como la disciplina científica que conocemos hoy en día nació en Europa. Allí, a mediados de la Edad Media europea se habían formado las universidades, donde se discutían temas de índole filosófica y técnica. Fue en ese contexto donde los naturalistas se dieron cuenta de que, si bien los nombres vulgares son útiles para el habla cotidiana, necesitaban un sistema más universal y riguroso para nombrar a los organismos: cada especie debía ser nombrada, cada especie debía poseer un único nombre, y cada especie debía ser descripta de forma inambigua. Posteriormente, con la dominación militar y cultural que una Europa revitalizada sostendría sobre el resto del mundo, el sistema allí consensuado se extendería a todo el globo.

 De la taxonomía linneana al Origen

 

En Europa, ya en 1583, el italiano Andreas Caesalpinus había delineado cuáles debían ser las características de un sistema de clasificación: debía ser fácil de usar y de memorizar, estable, predictivo y preciso (ver Greene 1983[45] ). Por lo tanto existía la conciencia de que un sistema de clasificación no sólo debía reflejar la naturaleza (lo que sea que eso significara para cada investigador, teniendo en cuenta que no había conocimiento de la evolución en ese momento), sino también servirle de utilidad a una comunidad de usuarios. Por un tiempo los naturalistas hicieron algunos intentos de ordenar la información disponible sobre los organismos y reglamentar sus nombres. Pero sin duda alguna fue en el siglo XVIII en que la taxonomía recibió un empujón definitivo, gracias al naturalista sueco Carlos Linneo, quien tenía la ambición de nombrar a todos los animales, plantas y minerales conocidos en la época, agruparlos de forma que reflejen la naturaleza según sus características físicas compartidas, y normalizar su denominación. Si bien ya había publicado trabajos más modestos antes, fue en 1753 cuando publicó un gigantesco trabajo de dos volúmenes en que almacenó y ordenó toda la información disponible sobre las plantas, y debido a su éxito, terminó siendo el trabajo que definió las bases del sistema de clasificación que se utiliza hoy en día. El libro se llamaba Species Plantarum ("Los tipos de plantas"), y estaba escrito en latín, que era el idioma universal de la época. En ese libro las especies de plantas estaban agrupadas en géneros (grupos de especies) según sus similitudes morfológicas. Linneo fue uno de los primeros naturalistas en enfatizar el uso de similitudes entre organismos para construir un sistema de clasificación. De esa forma y sin saberlo, estaba clasificando a los organismos en virtud de sus similitudes genéticas, y por lo tanto también evolutivas. En su libro, cada especie o "tipo de planta" era descripto con una frase en latín limitada a 12 palabras, en donde la primera de las 12 palabras siempre era el género al que pertenecía la especie. Él propuso que esas pequeñas descripciones fueran el nombre utilizado en todo el mundo para referirse a cada una de sus "especies". A estas pequeñas descripciones, o polinomios, él las llamó "el nombre propio de cada especie", pero hizo un importante agregado que había sido inventado en su momento por Caspar Bauhin (1560-1624): la nomenclatura binominal o binomios, como el "nombre corto" de las especies. En los márgenes de su Species Plantarum, seguido del nombre "apropiado" polinomial de cada especie, escribió una sola palabra. Esta palabra, combinada con la primera palabra del polinomio (todavía hoy llamada género), formaba un nombre más fácil de recordar y corto para cada especie. Por ejemplo, la hierba de gato fue nombrada "apropiadamente" con el polinomio: Nepeta floribus interrupte spicatus pedunculatis (en español, "Nepeta con flores en una espiga interrumpida pedunculada"). Linneo escribió la palabra cataria en el margen del nombre apropiado de la especie, que quiere decir "relacionada con los gatos", haciendo referencia a un atributo familiar de la especie. Tanto él como sus contemporáneos rápidamente empezaron a llamar a la planta con el nombre Nepeta cataria, que es el nombre que persiste hoy en día.

La nomenclatura binominal no fue la única característica impuesta en la nomenclatura académica europea por el éxito del libro: a la vez Linneo propuso un esquema jerárquico de clasificación, donde las especies muy similares morfológicamente se agrupaban en un mismo género. La categoría de género tampoco fue un invento de Linneo, de hecho, en 1694 Joseph Pitton de Tournefort ya había provisto guías para describir géneros de plantas: los caracteres de los géneros debían ser reconocibles en todos los miembros del género y ser visibles sin el uso de un microscopio. En lo posible, estos caracteres debían ser tomados de la flor y el fruto. Linneo utilizó los géneros, y creía que tanto los géneros como las especies existían en la naturaleza (eran "grupos naturales"), mientras que las categorías más altas eran sólo materia de conveniencia humana. Esta distinción entre categoría "real" y categoría "artificial" no era menor, ya que el creer que los géneros fueran reales (es decir, que existen independientemente de nuestro discernimiento), guía al investigador de una forma diferente de la que lo hace creer que la categoría es artificial. En palabras de Linneo:

.

de clasificación.

 Taxonomía y evolución

Diagrama dibujado por Charles Darwin en El Origen de las Especies.

Antes de que existiera la teoría de la evolución, se entendían las relaciones entre los organismos de una forma muy parecida a las relaciones entre los países en un mapa. Cuando irrumpió la teoría de la evolución a mediados del siglo XIX pronto se admitió, tal como formuló el propio Darwin, que el grado de parentesco entre los taxones (filogenia) debía ser el criterio para la formación de los grupos. La publicación de su libro El origen de las especies en 1859 estimuló la incorporación de teorías evolutivas en la clasificación, proceso que hoy en día aún no está terminado (de Queiroz y Gauthier 1992[51] ).

El debate entre los partidarios de los sistemas artificiales y los defensores de la construcción de un sistema natural fue uno de los conflictos teóricos más intensos de la biología de los siglos XVIII y XIX, sólo resuelto con la consolidación de la teoría de la evolución, que ofreció el primer criterio demostrable de "naturalidad": la ascendencia común. Cuanto más parecidos son dos organismos entre sí, más cercano es su ascendiente común, y por lo tanto más próximamente deben ser agrupados en la clasificación. Los organismos que comparten sólo unos pocos caracteres descienden de antepasados más lejanos y, por lo tanto, deben ser ubicados en taxones diferentes, compartiendo sólo los taxones más altos.

Un paso crítico en este proceso de convertir a los sistemas de clasificación en un reflejo de la historia evolutiva de los organismos fue la adquisición de una perspectiva filogenética, para la cual biólogos como Willi Hennig (entomólogo alemán, 1913-1976), Walter Zimmermann (botánico alemán, 1892-1980), Warren H. Wagner, Jr. (botánico norteamericano, 1920-2000) y muchos otros han hecho valiosos aportes. La Biología Sistemática es la ciencia que se ocupa de relacionar los sistemas de clasificación con teorías sobre la evolución de los taxones.

Hoy en día, el desarrollo de nuevas técnicas (como el análisis del ADN) y las nuevas formas de análisis filogenético (que permiten analizar matrices con una cantidad enorme de datos) están produciendo cambios sustanciales en las clasificaciones al uso, obligando a deshacer grupos de larga tradición y definir otros nuevos. Los aportes más significativos proceden de la comparación directa de los genes y de los genomas. El "boom" de los análisis genéticos de los diferentes organismos y su comparación ha invertido el papel de la morfología especialmente en la Taxonomía de plantas: cuando fue creada y durante muchos años, la Taxonomía era la ciencia que agrupaba a los organismos según sus afinidades morfológicas (y luego también anatómicas, fisiológicas, etc.). Pero hoy en día, cada vez más los organismos son agrupados según las similitudes en su ADN (y recientemente, en segundo lugar, con apoyo del registro fósil y la morfología); la evolución de los caracteres morfológicos es "interpretada" una vez el árbol filogenético está consensuado. Esta situación ha enriquecido el campo de la Biología Sistemática y ha conseguido establecer una relación íntima de esta última con la ciencia de la Evolución, relación que antes había sido desatendida por los científicos debido a la cantidad de imprecisiones existentes en los sistemas de clasificación antes del desarrollo de los análisis de ADN . En muchas porciones del árbol filogenético, la Taxonomía pasó a ser sólo la subdisciplina de la Biología Sistemática que se ocupa de crear el sistema de clasificación según las reglas, y la "estrella" pasó a ser el árbol filogenético en sí. Los sistemas de clasificación se hacen en colaboración, según el árbol filogenético más consensuado (ver por ejemplo APG II en 2003 para las angiospermas,[52] Smith et al. en 2006 para los helechos[53] ), y hoy en día se utilizan métodos estadísticos para consensuar los nodos del árbol filogenético.

 


    Dentro del programa de actividades o servicios complementarios de la Lista de ENTOMOLOGÍA, los administradores nos comprometimos a facilitar, cada cierto tiempo, un resumen de las intervenciones y debates que pudieran resultar más interesantes. Aunque en el futuro se dará otro formato a estos resúmenes, dentro de un proyecto que se encuentra en fase de elaboración y del que os informaremos en breve, procedemos ahora a presentar el primero de estos textos.

 

 

TAXONOMIA FILOGENIA , CLASIFICASIONES

 

    El Dr. Fermín Martín Piera propuso a la lista de Entomología y al Bol. SEA la posibilidad de resumir y reproducir en papel los debates más significativos y las propuestas más interesantes que fueran surgiendo en la Lista con el fin de que dichas ideas pudieran salir del ámbito de la red y ser analizadas por otros colectivos más amplios. Recogemos el reto y comenzamos con esta nota la redacción, a modo de resumen, de los debates entomológicos on-line.

    Dado que el número de temas y mensajes ha sido muy elevado, es necesario seleccionar aquellos que consideramos más interesantes. Durante el mes de octubre, sin duda, el tema estrella ha sido de contenido teórico en relación con los objetivos y vínculos entre Taxonomía, Sistemática y Filogenia y a la forma en que éstas construyen o son reflejadas en las Clasificaciones entomológicas. Inevitablemente, ha sido preciso renunciar a gran parte de los mensajes, recogiendo exclusivamente las ideas fundamentales y obviando referencias a otros temas colaterales que han ido surgiendo durante un debate que ha durado, en este caso, varias semanas. Por nuestra parte, además de seleccionar y resumir intervenciones, las hemos complementado con algunas aclaraciones necesarias para dar mayor coherencia al texto y hacerlo más comprensible para quienes no pudieron seguir los debates de forma íntegra.

 

Fundamentos de la taxonomía: clasificación y sistemática

    La taxonomía ha sido definida como una forma de organizar la información biológica con arreglo a diferentes métodos como el feneticismo, el cladismo, la taxonomía evolutiva, criterios de tipo ecológico, paleontológico, etc. Es una disciplina eminentemente empírica y descriptiva, acumula fenómenos, hechos, objetos, y a partir de dicha acumulación genera las primeras hipótesis explicativas.

    La sistemática es la ciencia de la diversidad, es decir, la organización del conjunto total del conocimiento sobre los organismos. Incluye la información filogenética, taxonómica, ecológica o paleontológica. Es una disciplina de síntesis, de abstracción de conceptos, de enunciado de teorías explicativas de los fenómenos observados. Por lo tanto, tiene en sí, un trasfondo teórico que supera al de la taxonomía y una vocación predictiva.

    Además de describir organismos, la importancia de la taxonomía estriba en que organiza la diversidad entomológica en forma de clasificaciones.

    Linneo clasificó los seres vivos según sus semejanzas morfológicas estableciendo el actual sistema nomenclatural. No obstante, los grupos que creó no fueron hechos de cualquier modo. De acuerdo con las creencias de la época el mundo había sido creado, tal como lo conocemos hoy, por una entidad Divina superior. Por este motivo, Linneo buscaba describir el orden natural que encierra toda la naturaleza y que es el orden establecido en la ley divina. Después de la publicación del Origen de las Especies por Darwin en 1859 se adquirió conciencia de la mutabilidad de las especies y de que la relación que hay entre unas y otras obedece a criterios de semejanza evolutiva entre ellas, además de la nueva concepción relativa a que las especies se originan unas de otras. Por este motivo la taxonomía tiene actualmente un trasfondo evolutivo. Hay que recordar que cualquier grupo ha sufrido numerosas revisiones y reclasificaciones hasta adquirir cierto consenso, lo que da a la taxonomía tradicional una gran autoridad en cuanto a sus resultados.

    Se han distinguido diversas posturas ante las relaciones entre Taxonomía y Filogenia, que pueden resumirse en sus dos extremos que van desde que ambas son disciplinas independientes, básicamente herramientas o métodos que permiten dar un nombre tipificado a determinados 'entes' con los que hay que trabajar, en el primer caso, y metodologías que facilitan el análisis comparativo, en el segundo (postura sostenida por algunos ecólogos), hasta la postura contraria que entiende a la Taxonomía como aproximación a la Filogenia, debiendo reflejar la evolución de las especies y, por tanto, considerando a ambas disciplinas como interdependientes. Pero incluso entre los partidarios de esta postura, han existido diferencias de matiz, en función de que la Taxonomía sea considerada una reproducción fiel de la Filogenia o, por contra, la refleje pero aceptando un cierto margen de imprecisión para obviar algunos difíciles problemas que plantea la jerarquía linneana (ver más adelante).

    Se ha criticado que la taxonomía deba tener necesariamente relación con la filogenia, a lo que se ha respondido diciendo que la clasificación se ha de realizar sobre alguna base sólida, sea del tipo que sea. Esta relación ha sido la de los parentescos de tipo evolutivo que llevan a parentescos de tipo morfológico. Es un criterio al que podemos llamar natural, ya que se puede observar directamente en la naturaleza. El problema, en el fondo, es determinar hasta qué punto la taxonomía debe ser compatible con la filogenia pues no necesariamente ha de ser un compendio exhaustivo de esta última. En palabras de uno de los participantes: "las clasificaciones que utilizamos en Taxonomía son, de hecho, resúmenes de hipótesis filogenéticas, o filogenias simplificadas".

    Por lo tanto, una buena clasificación es aquella que permite desarrollar un árbol evolutivo a partir de los grupos creados, aunque el árbol no sea exhaustivo. La taxonomía no tiene en cuenta aspectos evolutivos en su elaboración del trabajo diario. No obstante, la taxonomía tradicional, basada casi exclusivamente en caracteres morfológicos, ha establecido una clasificación que en la actualidad se muestra como bastante cercana a la realidad. Esto es debido a que las semejanzas morfológicas obedecen a criterios de relaciones filogenéticas: cuanto más cercanas sean dos especies, evolutivamente hablando, más parecidas serán en su morfología. Por lo tanto, cuando un taxónomo trabaja, aún no siendo consciente de ello, está realizando comparaciones de tipo filogenético aunque sea a un nivel básico. Por ello las clasificaciones son teorías acerca de la base del orden natural, y no tediosos catálogos compilados con le único fin de evitar el caos.

 FORMAS Y FUENTES DE ENERGIA

    Se ha estado de acuerdo en que las categorías tales como Phylum, clase, género, etc. son subjetivas y están sujetas a la visión que el investigador tenga de cada grupo en particular. Sin embargo si los grupos que los forman son monofiléticos, estos grupos tienen una entidad real, independientemente de cuál sea su categoría sistemática.

  • Energía nuclear

Energía liberada durante la fisión o fusión de núcleos atómicos. Las cantidades de energía que pueden obtenerse mediante procesos nucleares superan con mucho a las que pueden lograrse mediante procesos químicos, que sólo implican las regiones externas del átomo.

La energía de cualquier sistema, ya sea físico, químico o nuclear, se manifiesta por su capacidad de realizar trabajoo liberar caloro radiación. La energía total de un sistema siempre se conserva, pero puede transferirse a otro sistema o convertirse de una forma a otra.

  • Energía cinética

Energía que un objeto posee debido a su movimiento. La energía cinética depende de la masa y la velocidad del objeto según la ecuación

E = 1mv2

donde m es la masa del objeto y v2 la velocidad del mismo elevada al cuadrado. El valor de E también puede derivarse de la ecuación

 

E = (ma)d

donde a es la aceleración de la masa m y des la distancia a lo largo de la cual se acelera. Las relaciones entre la energía cinética y la energía potencial, y entre los conceptos de fuerza, distancia, aceleración y energía, pueden ilustrarse elevando un objeto y dejándolo caer.

Cuando el objeto se levanta desde una superficie se le aplica una fuerza vertical. Al actuar esa fuerza a lo largo de una distancia, se transfiere energía al objeto. La energía asociada a un objeto situado a determinada altura sobre una superficie se denomina energía potencial. Si se deja caer el objeto, la energía potencial se convierte en energía cinética. Véase Mecánica.

  • Energía potencial

Energía almacenada que posee un sistema como resultado de las posiciones relativas de sus componentes. Por ejemplo, si se mantiene una pelota a una cierta distancia del suelo, el sistema formado por la pelota y la Tierratiene una determinada energía potencial; si se eleva más la pelota, la energía potencial del sistema aumenta. Otros ejemplos de sistemascon energía potencial son una cinta elástica estirada o dos imanes que se mantienen apretados de forma que se toquen los polos iguales.

Para proporcionar energía potencial a un sistema es necesario realizar un trabajo. Se requiere esfuerzo para levantar una pelota del suelo, estirar una cinta elástica o juntar dos imanes por sus polos iguales. De hecho, la cantidad de energía potencial que posee un sistema es igual al trabajo realizado sobre el sistema para situarlo en cierta configuración. La energía potencial también puede transformarse en otras formas de energía. Por ejemplo, cuando se suelta una pelota situada a una cierta altura, la energía potencial se transforma en energía cinética.

Fuentes Renovables

  • Energía Hidráulica

Ya desde la antigüedad, se reconoció que el agua que fluye desde un nivel superior a otro inferior posee una determinada energía cinética susceptible de ser convertida en trabajo, como demuestran los miles de molinos que a lo largo de la historia fueron construyéndose a orillas de los ríos.

Más recientemente, hace más de un siglo, se aprovecha la energía hidráulica para generar electricidad, y de hecho fue una de las primeras formas que se emplearon para producirla.
El aprovechamiento de la energía potencial del aguapara producir energía eléctrica utilizable, constituye en esencia la energía hidroeléctrica. Es por tanto, un recurso renovable y autóctono. El conjunto de instalaciones e infraestructura para aprovechar este potencial se denomina central hidroeléctrica.

Hoy en día, con los problemasmedioambientales, se ven las cosas desde otra perspectiva. Esto ha hecho que se vayan recuperando infraestructuras abandonadas dotándolas de nuevos equipos automatizados y turbinas de alto rendimiento. En consecuencia, el impacto ambiental no es más del que ya existía o por lo menos inferior al de una gran central. A estas instalaciones, con potencia inferior a 5.000KW se les denomina minihidráulicas.

Las minicentrales hidroeléctricas están condicionadas por las características del lugar de emplazamiento. La topografía del terreno influye en la obra civil y en la selección del tipo de máquina.

  • Centrales de aguas fluyentes

Aquellas instalaciones que mediante una obra de toma, captan una parte del caudal del río y lo conducen hacia la central para su aprovechamiento, para después devolverlo al cauce del río.

  • Centrales de pie de presa

Son los aprovechamientos hidroeléctricos que tienen la opción de almacenar las aportaciones de un río mediante un embalse. En estas centrales se regulan los caudales de salida para utilizarlos cuando se precisen

  • Centrales de canal de riego o abastecimiento

Se pueden distinguir dos tipos:

  • Con desnivel existente en el propio canal

Se aprovecha mediante la instalación de una tubería forzada, que conduce el agua a la central, devolviéndola posteriormente al curso normal del canal.

  • Con desnivel existente entre el canal y el curso de un río cercano

En este caso la central se instala cercana al río y se aprovechan las aguas excedentes en el canal.

A la hora de realizar un proyectode una minicentral hidroeléctrica y dependiendo del tipo por su emplazamiento, la determinación del caudal y la altura de salto determinará la potencia a instalar, así como, el tipo de miniturbina.

Existen varios tipos de miniturbinas:

De reacción, que aprovecha la energía de presión del agua en energía cinética en el estator, tanto en la entrada como en la salida, estas aprovechan la altura disponible hasta el nivel de desagüe.

Kaplan: se componen básicamente de una cámara de entrada que puede ser abierta o cerrada, un distribuidor fijo, un rodete con cuatro o cinco palas fijas en forma de hélice de barco y un tubo de aspiración.

Francis: caracterizada por que recibe el flujo de agua en dirección radial, orientándolo hacia la salida en dirección axial.

 

Se compone de:

Un distribuidor que contiene una serie de álabes fijos o móviles que orientan el agua hacia el rodete. Un rodete formado por una corona de paletas fijas, torsionadas de forma que reciben el agua en dirección radial y lo orientan axialmente. Una cámara de entrada, que puede ser abierta o cerrada de forma espiral, para dar una componente radial al flujo de agua. Un tubo de aspiración o de salida de agua, que puede ser recto o acodado y se encarga de mantener la diferencia de presiones necesaria para el buen funcionamiento de la turbina.

De flujo cruzado: también conocida como de doble impulsión, constituida principalmente por un inyector de sección rectangular provisto de un álabe longitudinal que regula y orienta el caudal que entra en la turbina, y un rodete de forma cilíndrica, con múltiples palas dispuestas como generatrices y soldadas por los extremos a discos terminales.

El caudal que entra en la turbina es orientado por el álabe del inyector, hacia las palas del rodete, produciendo un primer impulso. Posteriormente, atraviesa el interior del rodete y proporciona un segundo impulso, al salir del mismo y caer por el tubo de aspiración.

De acción, que aprovecha la energía de presión del agua para convertirla en energía cinética en el estator, estas aprovechan la altura disponible hasta el eje de la turbina.

Pelton: Consta de un disco circular que tiene montados en su periferia unas paletas en forma de doble cuchara y de un inyector que dirige y regula el chorro de agua que inciden sobre las cucharas, provocando el movimiento de giro de la turbina.

  • Energía Solar

Energía radiante producida en el Sol como resultado de reacciones nucleares de fusión . Llega a la Tierra a través del espacio en cuantos de energía llamados fotones, que interactúan con la atmósfera y la superficie terrestres. La intensidad de la radiación solar en el borde exterior de la atmósfera, si se considera que la Tierra está a su distancia promedio del Sol, se llama constante solar, y su valor medio es 1,37 × 106 erg/s/cm2, o unas 2 cal/min/cm2. Sin embargo, esta cantidad no es constante, ya que parece ser que varía un 0,2% en un periodo de 30 años. La intensidad de energía real disponible en la superficie terrestre es menor que la constante solar debido a la absorción y a la dispersión de la radiación que origina la interacción de los fotones con la atmósfera.

La intensidad de energía solar disponible en un punto determinado de la Tierra depende, de forma complicada pero predecible, del día del año, de la hora y de la latitud. Además, la cantidad de energía solar que puede recogerse depende de la orientación del dispositivo receptor.

  • Energía Solar Térmica

Un sistema de aprovechamiento de la energía solar muy extendido es el térmico. El medio para conseguir este aporte de temperatura se hace por medio de colectores.

El colector es una superficie, que expuesta a la radiación solar, permite absorber su calor y transmitirlo a un fluido. Existen tres técnicas diferentes entre sí en función de la temperatura que puede alcanzar la superficie captadora. De esta manera, los podemos clasificar como:

Baja temperatura, captación directa, la temperatura del fluido es por debajo del punto de ebullición .

Media temperatura, captación de bajo índice de concentración, la temperatura del fluido es más elevada de 100ºC .

Alta temperatura, captación de alto índice de concentración, la temperatura del fluido es más elevada de 300ºC .

  • Energía Solar Fotovoltática

El sistema de aprovechamiento de la energía del Sol para producir energía eléctrica se denomina conversión fotovoltaica.

Las células solares están fabricadas de unos materialescon unas propiedades específicas, denominados semiconductores.

Para entender el funcionamiento de una célula solar, debemos de entender las propiedades de estos semiconductores.

Propiedades de los semiconductores.

Los electrones que se encuentran orbitando al rededor del núcleo atómico no pueden tener cualquier energía, solamente unos valores determinados, que son denominados, niveles energéticos, a los que se pone nombre: 1s, 2s, 2p, 3s, 3p.

Las propiedades químicas de los elementos están determinadas por el número de electrones en su última capa y por electrones que faltan para completarla. En el silicio, material que se usa para la construcción de una célula solar, en su última capa, posee cuatro electrones y faltan otros cuatro para completarla.

Cuando los átomos de silicio se unen a otros, comparten los electrones de las últimas capas con la de los átomos vecinos, formando lo que se denomina enlace covalente. Estas agrupaciones dan lugar a un sólido de estructura cristalina.

De la forma, que los electrones de un átomo no pueden tener cualquier energía, los electrones de un cristal tampoco pueden tomar cualquier energía.

Teniendo en cuenta que en el átomo sus propiedades se determinan en la última capa, ahora son agrupaciones de capas, llamadas bandas de energía, y que definen las propiedades electrónicas de un cristal.

Las dos últimas capas ocupadas por electrones reciben el nombre de banda de conducción y banda de valencia. Estas están separadas por una energía denominada gap.

Para poder entender esto describiremos los tipos de materiales existentes, eléctricamente hablando:

  • Conductores, disponen de unos electrones de valencia poco ligados al núcleo y que pueden moverse con facilidad dentro de la red cristalina respondiendo a un estímulo externo.
  • Semiconductores, sus electrones de valencia están más ligados a sus núcleos que los conductores, pero basta suministrar una pequeña cantidad de energía para que se comporten igual que estos.
  • Aislantes, los electrones de valencia están fuertemente ligados al núcleo y la energía a suministrar para poder desprenderse del átomo sería excesivamente grande.

Llegando a este punto, podemos decir que a cierta temperatura, algunos electrones tendrán energía suficiente para desligarse de los átomos, a estos electrones libres se les denomina "electrones" y se les asocia con los niveles energéticos de la banda de conducción.

A los enlaces que han dejado vacíos se les denomina "huecos"; para entender mejor este racionamiento diremos que los "huecos" se comportan de la misma forma que partículas con carga positiva.

Si pusiéramos un cristal de estas características, lo único que conseguiríamos sería calentar el cristal, ya que los electrones se moverían dentro del propio cristal, se generarían pares electron-hueco, que constan de un electrón que se mueve y deja un hueco, a ese hueco irá otro electrón próximo, generando otro hueco y así sucesivamente.

Para generar una corriente eléctrica hace falta un campo magnético, que se consigue con la unión de dos cristales semiconductores, uno de tipo "p" y otro de tipo "n".

Estos semiconductores se obtienen con un cristal semiconductor muy puro, introduciéndoles impurezas (dopado).

Una de las regiones se dopa con fósforo, que tiene cinco electrones de valencia, uno más que el silicio, de forma que esta región dopada muestrauna afinidad por los electrones mayor que el silicio puro. A esta región se le denomina de tipo n.

La otra región de dopa con boro, que tiene tres electrones de valencia, uno menos que el silicio, de forma que esta región muestra una afinidad por los electrones inferior que el silicio puro. A esta región se le denomina de tipo p.

De esta forma, teniendo un cristal semiconductor de silicio formado por una región de tipo p y otra región de tipo n, se consigue una diferencia de potencial que hace que los electrones tengan menos energía en la zona n que en la zona p. Por esta razón los electrones son enviados a la zona n y los huecos a la zona p.

Cuando inciden fotones sobre este tipo de semiconductor, unión p-n, es cuando entonces se rompen algunos enlaces, generándose de esta forma pares electrón-hueco.

Las células solares, para poder suministrar energía al exterior, van provistas de unos dedos o mallas de metalización frontal, que consisten en partes metálicas por la que circula al exterior la corriente eléctrica generada.

Si esta generación se produce a una distancia de la unión menor que lo que se denomina longitud de difusión, estos pares serán separados por el fuerte campo eléctrico que existe en la unión, moviéndose el electrón hacia la zona n y el hueco hacia la zona p. De esta forma se da una corriente de la zona n a la zona p.

Si estos electrones consiguen ser recolectados por la malla de metalización, obtendremos energía eléctrica

Si la longitud de difusión es muy corta, el par electrón-hueco, se recombinará, lo cuál dará origen a calor.

Por supuesto esto siempre que la célula esté iluminada.

De todas formas no todos los fotones incidentes generan electricidad, hay factores que hacen que existan pérdidas en esta generación.

  • Energía de fotones incidentes, hay veces que los fotones incidentes no disponen de la energía necesaria para romper un enlace covalente y crear un par electrón-hueco, y otras, el fotón tiene demasiada energía, lo cual se disipa en forma de calor.
  • Recombinación, es el hecho de que los electrones liberados ocupen un hueco próximo a ellos.
  • Reflexión, parte de la radiación incidente en la célula es reflejada.
  • Malla de metalización, estos contactos eléctricos en el exterior de la célula, disminuye la superficie de captación.
  • Resistencia serie, es el efecto Joule producido por el paso de electrones a través del silicio, la malla de metalización y resistencia de los contactos de conexión eléctricas al circuito exterior.
  • Resistencia paralelo, tiene origen en las imperfecciones de la unión p-n, creando fugas de corriente.

Estas células conexionadas entre sí, y montadas en un módulo o panel es lo que llamamos panel solar. Cuyas características electricas vienen determinadas por el numero y forma de conexión de las células.

Conexión serie, conexionadas de forma que el lado p sea conectado con el lado n de otra célula, así sucesivamente, quedando cada extremo con un lado n y otro p.

Las tensiones generadas de cada célula se suman, la corriente es el valor de una célula.

Conexión paralelo, conexionados todos los lados de tipo p, por un lado, y los de tipo n por otro.

La tensión generada es la de una célula y la corriente es la suma de todas.

Conexión mixta, es la conexión en serie y en paralelo de las células.

Donde la tensión generada es la suma de las tensiones de células en serie y la corriente es la suma de todas las células en paralelo.

Itotal = I x número de celulas en paralelo

Vtotal = V x número de células en serie

Existen varios tipos de paneles fotovoltaicos, que se diferencian bien por su tecnología de fabricación de células o por su aplicación.

  • Silicio monocristalino
  • Silicio policristalino
  • Silicio amorfo
  • Policristalinos de lámina delgada
  • Paneles para el espacio
  • Sulfuro de cadmio y sulfuro de cobre
  • Teluro de cadmio
  • Seleniuro de cobre e indio
  • Arseniuro de galio o de concentración
  • Bifaciales
  • Energía Geotérmica

Nuestro planeta guarda una enorme cantidad de energía en su interior. Un volcán o un geíser es una buena muestra de ello.

Son varias las teorías que tratan de explicar las elevadas temperaturas del interior de la Tierra. Unas sostienen que se debe a las enormes presiones existentes bajo la corteza terrestre; otras suponen que tienen origen en determinados procesos radiativos internos; por último, hay una teoría que lo atribuye a la materia incandescente que formó nuestro planeta.

Diversos estudios científicos realizados en distintos puntos de la superficie terrestre han demostrado que, por término medio, la temperatura interior de la Tierra aumenta 3ºC cada 100m. de profundidad.

Este aumento de temperatura por unidad de profundidad es denominado gradiente geotérmico.

Se supone que variará cuando alcancen grandes profundidades, ya que en el centro de la Tierra se superarían los 20.000ºC, cuando en realidad se ha calculado que es, aproximadamente, de 6.000ºC.

La forma más generalizada de explotarla, a excepción de fuentes y baños termales, consiste en perforar dos pozos, uno de extracción y otro de inyección.

En el caso de que la zona esté atravesada por un acuífero se extrae el agua caliente o el vapor, este se utiliza en redes de calefacción y se vuelve a inyectar, en el otro caso se utiliza en turbinas de generación de electricidad.

En el caso de no disponer de un acuífero, se suele proceder a la fragmentación de las rocas calientes y a la inyección de algún fluido.

Es difícil el aprovechamiento de esta energía térmica, ocasionado por el bajo flujo de calor, debido a la baja conductividad de los materiales que la constituyen; pero existen puntos en el planeta que se producen anomalías geotérmicas, dando lugar a gradientes de temperatura de entre 100 y 200ºC por kilómetro, siendo estos puntos aptos para el aprovechamiento de esta energía.

FONOMENOS ELECTROMAGNETICOS

http://www.google.com/search?hl=es&q=fenomenos+electromagneticos+&lr=&aq=f&aqi=g10&aql=&oq=&gs_rfai=

Ferrofluido que se agrupa cerca de los polos de un magneto poderoso.

El electromagnetismo es una rama de la Física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron sentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales (corriente eléctrica, polarización eléctrica y polarización magnética), conocidas como ecuaciones de Maxwell.

El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. Por ser una teoría macroscópica, es decir, aplicable sólo a un número muy grande de partículas y a distancias grandes respecto de las dimensiones de éstas, el Electromagnetismo no describe los fenómenos atómicos y moleculares, para los que es necesario usar la Mecánica Cuántica.

El electromagnetismo considerado como fuerza es una de las cuatro fuerzas fundamentales del universo actualmente conocido.

//

Historia

Artículo principal: Historia del electromagnetismo

Desde la antigua Grecia se conocían los fenómenos magnéticos y eléctricos pero no es hasta inicios del siglo XVII donde se comienza a realizar experimentos y a llegar a conclusiones científicas de estos fenómenos.[1] Durante estos dos siglos, XVII y XVIII, grandes hombres de ciencia como William Gilbert, Otto von Guericke, Stephen Gray, Benjamin Franklin, Alessandro Volta entre otros estuvieron investigando estos dos fenómenos de manera separada y llegando a conclusiones coherentes con sus experimentos.

A principios del siglo XIX Hans Christian Ørsted encontró evidencia empírica de que los fenómenos magnéticos y eléctricos estaban relacionados. De ahí es que los trabajos de físicos como André-Marie Ampère, William Sturgeon, Joseph Henry, Georg Simon Ohm, Michael Faraday en ese siglo, son unificados por James Clerk Maxwell en 1861 con un conjunto de ecuaciones que describían ambos fenómenos como uno solo, como un fenómeno electromagnético.[1]

Las ahora llamadas ecuaciones de Maxwell demostraban que los campos eléctricos y los campos magnéticos eran manifestaciones de un solo campo electromagnético. Además describía la naturaleza ondulatoria de la luz, mostrándola como una onda electromagnética.[2] Con una sola teoría consistente que describía estos dos fenómenos antes separados, los físicos pudieron realizar varios experimentos prodigiosos e inventos muy útiles como la bombilla eléctrica por Thomas Alva Edison o el generador de corriente alterna por Nikola Tesla.[3] El éxito predicitivo de la teoría de Maxwell y la búsqueda de una interpretación coherente de sus implicaciones, fue lo que llevó a Albert Einstein a formular su teoría de la relatividad que se apoyaba en algunos resultados previos de Hendrik Antoon Lorentz y Henri Poincaré.

En la primera mitad del siglo XX, con el advenimiento de la mecánica cuántica, el electromagnetismo tenía que mejorar su formulación con el objetivo de que fuera coherente con la nueva teoría. Esto se logró en la década de 1940 cuando se completó una teoría cuántica electromagnética o mejor conocida como electrodinámica cuántica.

 

que es energia eolica

 

La energía eolica es la energía cuyo origen proviene del movimiento de masa de aire3 es decir del viento.

En la tierra el movimiento de las masas de aire se deben principalmente a la diferencia de presiones existentes en distintos lugares de esta, moviéndose de alta a baja presión, este tipo de viento se llama viento geoestrofico.

Para la generación de energía eléctrica  apartir de la energía del viento a nosotros nos interesa mucho mas el origen de los vientos en zonas mas especificas del planeta, estos vientos son los llamados vientos locales, entre estos están las brisas marinas que son debida a la diferencia de temperatura entre el mar y la tierra , también están los llamados vientos de montaña que se producen por el calentamiento de las montañas y esto afecta en la densidad del aire y hace que el viento suba por la ladera de la montaña o baje por esta dependiendo si es de noche o de día.